6072 measured reflections

 $R_{\rm int}=0.030$

2664 independent reflections

2416 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Poly[[hexaaqua(μ_2 -oxalato- $\kappa^4 O^1, O^2$:- $O^{1'}, O^{2'}$)bis(μ_3 -pyridine-2,4-dicarboxylato- $\kappa^4 N, O^1: O^1: O^4$)dicerium(III)] monohydrate]

Fwu Ming Shen^a and Shie Fu Lush^b*

^aDepartment of Biotechnology, Yuanpei University, HsinChu 30015, Taiwan, and ^bDepartment of General Education Center, Yuanpei University, HsinChu 30015, Taiwan

Correspondence e-mail: lush@mail.ypu.edu.tw

Received 28 November 2011; accepted 1 December 2011

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.006 Å; disorder in solvent or counterion; R factor = 0.028; wR factor = 0.081; data-to-parameter ratio = 15.1.

In the polymeric title compound, {[Ce₂(C₇H₃NO₄)₂(C₂O₄)-(H₂O)₆]·H₂O}_n, the Ce³⁺ cation is nine-coordinated in a distorted CeNO₈ tricapped trigonal–prismatic geometry, formed by three pyridine-2,4-dicarboxylate anions, one oxalate anion and three water molecules. The mid-point of the oxalate anion is located on an inversion center. The oxalate and pyridine-2,4-dicarboxylate anions bridge the Ce³⁺ cations, forming a two-dimensional polymeric complex parallel to (010). Intermolecular classical O–H···O hydrogen bonding and weak C–H···O hydrogen bonding are present in the crystal structure and π - π stacking [centroid–centroid distance = 3.558 (2) Å] is observed between parallel pyridine rings of adjacent molecules. The uncoordinated water molecule shows an occupancy of 0.5.

Related literature

For the isotypic La^{3+} complex, see: Shen & Lush (2011). For related pyridine-2,4-dicarboxylate complexes, see: Aghabozorg *et al.* (2011); Li *et al.* (2007); Wang *et al.* (2009).

Experimental

Crystal data

 $[Ce_2(C_7H_3NO_4)_2(C_2O_4)(H_2O_6)]$ -- $\beta = 85.588 \ (1)^{\circ}$ H₂O $\gamma = 73.676 (1)^{\circ}$ $M_r = 824.58$ V = 570.98 (8) Å³ Triclinic, $P\overline{1}$ Z = 1Mo $K\alpha$ radiation a = 6.4160 (5) Åb = 6.6486 (6) Å $\mu = 4.04 \text{ mm}^{-1}$ T = 294 Kc = 13.9920 (12) Å $\alpha = 89.917 (1)^{\circ}$ $0.30 \times 0.10 \times 0.10$ mm

Data collection

Bruker SMART 1000 CCD areadetector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2001) $T_{\rm min} = 0.639, T_{\rm max} = 0.937$

Refinement

I v

2

$R[F^2 > 2\sigma(F^2)] = 0.028$	177 parameters
$vR(F^2) = 0.081$	H-atom parameters constrained
S = 1.10	$\Delta \rho_{\rm max} = 2.75 \text{ e} \text{ \AA}^{-3}$
664 reflections	$\Delta \rho_{\rm min} = -2.70 \text{ e } \text{\AA}^{-3}$

Table 1

Selected bond lengths (Å).

Ce-N1	2.684 (3)	Ce-O6 ⁱⁱⁱ		2.51	15 (3)
Ce-O1 ⁱ	2.409 (4)	Ce-O7		2.56	58 (5)
Ce-O3 ⁱⁱ	2.505 (3)	Ce-O8		2.51	15 (4)
Ce-O4	2.511 (3)	Ce-O9		2.58	32 (5)
Ce-O5	2.508 (3)				
Symmetry codes: (i) r + 1 - r + 2	-x + 1, -y	+1, -z +1;	(ii)	x - 1, y, z;	(iii)
x + 1, $y + 1$, $z + 2$.					

Table 2			
Hydrogen-bond	geometry	(Å,	°).

$\overline{D-\mathrm{H}\cdots A}$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O7-H7A\cdots O4^{ii}$	0.86	2.03	2.879 (6)	171
$O7 - H7B \cdots O10^{iv}$	0.83	1.84	2.569 (10)	146
$O8-H8A\cdots O6^{v}$	0.92	2.00	2.910 (5)	170
$O8-H8B\cdots O2^{vi}$	0.86	1.84	2.655 (6)	159
$O9-H9A\cdots O6^{v}$	0.99	2.01	2.987 (6)	169
O9−H9B···O10	0.84	1.93	2.440 (10)	118
O10−H10A···O5 ⁱⁱ	0.84	2.12	2.844 (9)	143
$O10-H10A\cdots O8^{ii}$	0.84	2.39	2.913 (10)	121
$O10-H10B\cdots O9^{vii}$	0.94	1.63	2.501 (11)	153
$C5-H5A\cdots O3^{ii}$	0.93	2.46	3.131 (5)	129

Symmetry codes: (ii) x - 1, y, z; (iv) x, y + 1, z; (v) -x + 1, -y, -z + 2; (vi) -x + 2, -y, -z + 1; (vii) -x, -y, -z + 2.

Data collection: *SMART* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *PLATON*.

This work was supported financially by Yuanpei University, Taiwan.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5400).

References

- Aghabozorg, H., Jafarbak, F., Mirzaei, M. & Notash, B. (2011). Acta Cryst. E67, m435-m436.
- Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

- Li, X.-M., Niu, Y.-L., Wang, Q.-W. & Liu, B. (2007). Acta Cryst. E63, m487–m488.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Shen, F. M. & Lush, S. F. (2011). Acta Cryst. E67, m1731-m1732.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Wang, G.-H., Li, Z.-G., Jia, H.-Q., Hu, N.-H. & Xu, J.-W. (2009). Acta Cryst. E65, m1568-m1569.

supplementary materials

Acta Cryst. (2012). E68, m21-m22 [doi:10.1107/S1600536811051956]

Poly[[hexaaqua(μ_2 -oxalato- $\kappa^4 O^1, O^2: O^1', O^2'$)bis(μ_3 -pyridine-2,4-dicarboxylato- $\kappa^4 N, O^1: O^1: O^4$)dicerium(III)] monohydrate]

F. M. Shen and S. F. Lush

Comment

The pyridine-2,4-dicarboxylic acid (pdcH2) has important coordination functions to metals by either carboxylate bridges between metal centers, to form dimeric complexes or tridentate (O, N, O') chelation to metal ions. Some pydc complexes have been reported (Li *et al.*, 2007; Wang *et al.*, 2009; Aghabozorg *et al.*, 2011).

The title complex is isomorphous with the La^{3+} complex (Shen & Lush, 2011). The Ce^{III} is nine-coordinated in a distorted tricapped trigonal prismatic geometry formed by N and O atoms from a pydc ligand, two O atoms from two pydc ligands, two O atoms from one oxalate ligand and three O atoms from coordinated water molecules (shown as Fig. 1, Table 1). The mid-point of the oxalate anion is located on an inversion center. The oxalate and pyridinedicarboxylate anions bridge the Ce³⁺ cations to form the polymeric complex (Fig. 2).

The crystal structure contains O—H···O and weak C—H···O hydrogen bonds. The π - π stacking between two pyridine rings of (pydc) anion fragments with centroids distance of 3.558 (2) Å (1 - x, 1 - y, 1 - z) are observed. The uncoordinated water molecule shows half-occupation.

Experimental

 $Ce(NO_3)_3.6H2O(0.1086 \text{ g}, 0.25 \text{ mmole})$, pydridine-2,4-dicarboxylic acid (0.0418 g, 0.25 mmol) and 4,4'-dipyridine (0.0464 g, 0.25 mmol) were mixed in 10 ml of deionized water. After stirring for 30 min, the mixture was placed in a 23 ml Teflonlined reactor which was heated under autogenous pressure to 418 K for 48 h and then allowed to cool to room temperature. The colorless transparent single crystals were obtained in 35.6% yield (based on Ce).

Refinement

The site occupancy factor of the lattice water O10 was refined to 0.486 (15), and was set as 0.5 at the final cycles of refinement. Water H atoms were fixed in chemical sensible positions, thermal parameters were fixed as 0.08 Å². Other H atoms were positioned geometrically with C—H = 0.93 Å (aromatic) and refined using a riding model with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. View of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level. All H atoms have been omitted for clarity. [Symmetry code: (i) x - 1, y, z; (ii) -x + 1, -y + 1, -z + 1; (iii) -x + 1, -y + 1, -z + 2.]

Fig. 2. The crystal packing of (I) viewed along the c axis. Hydrogen bonds are shown as dashed lines.

 $\label{eq:poly_eq} \begin{array}{l} Poly[[hexaaqua(\mu_2-oxalato-\ \kappa^4O^1,O^2:O^1',O^2')bis(\mu_3-pyridine-\ 2,4-dicarboxylato-\ \kappa^4N,O^1:O^1:O^1:O^4)dicerium(III)] \\ monohydrate] \end{array}$

Crystal data

$[Ce_2(C_7H_3NO_4)_2(C_2O_4)(H_2O)_6]$ ·H ₂ O	Z = 1
$M_r = 824.58$	F(000) = 398
Triclinic, <i>P</i> T	$D_{\rm x} = 2.398 {\rm Mg m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 6.4160 (5) Å	Cell parameters from 4490 reflections
b = 6.6486 (6) Å	$\theta = 2.5 - 25.0^{\circ}$
c = 13.9920 (12) Å	$\mu = 4.04 \text{ mm}^{-1}$
$\alpha = 89.917 (1)^{\circ}$	T = 294 K
$\beta = 85.588 \ (1)^{\circ}$	Columnar, colorless
$\gamma = 73.676 \ (1)^{\circ}$	$0.30\times0.10\times0.10\ mm$
$V = 570.98 (8) \text{ Å}^3$	

Data collection

2664 independent reflections
2416 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.030$
$\theta_{\text{max}} = 27.8^{\circ}, \ \theta_{\text{min}} = 1.5^{\circ}$
$h = -8 \rightarrow 8$
$k = -8 \rightarrow 8$
$l = -18 \rightarrow 18$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.028$	H-atom parameters constrained
$wR(F^2) = 0.081$	$w = 1/[\sigma^2(F_o^2) + (0.0523P)^2 + 0.4154P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.10	$(\Delta/\sigma)_{\rm max} = 0.019$
2664 reflections	$\Delta \rho_{max} = 2.75 \text{ e } \text{\AA}^{-3}$
177 parameters	$\Delta \rho_{\rm min} = -2.70 \text{ e } \text{\AA}^{-3}$
0 restraints	Extinction correction: <i>SHELXTL</i> (Sheldrick, 2008), FC [*] =KFC[1+0.001XFC ² Λ^3 /SIN(2 Θ)] ^{-1/4}
Primary atom site location: structure-invariant direct	Extinction coefficient: 0.0071 (15)

methods

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F^2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted *R*factors wR and all goodnesses of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The observed criterion of $F^2 > \sigma(F^2)$ is used only for calculating -*R*-factor-obs *etc*. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
Ce	0.36484 (3)	0.33000 (3)	0.80343 (1)	0.0198 (1)	
01	0.7620 (6)	0.3463 (6)	0.2798 (2)	0.0356 (11)	
O2	1.0901 (6)	0.2177 (7)	0.3373 (3)	0.0438 (13)	
O3	1.0817 (5)	0.2746 (6)	0.7009 (2)	0.0350 (10)	
O4	0.7595 (5)	0.3214 (7)	0.7822 (2)	0.0380 (13)	
O5	0.5054 (7)	0.2476 (5)	0.9655 (2)	0.0408 (13)	
O6	0.5773 (6)	0.3678 (5)	1.1047 (2)	0.0360 (10)	
O7	0.0036 (8)	0.5134 (8)	0.8992 (4)	0.0729 (14)	
O8	0.5654 (6)	-0.0533 (6)	0.7844 (3)	0.0419 (11)	
O9	0.1789 (8)	0.0870 (8)	0.8994 (4)	0.0729 (14)	
N1	0.5723 (5)	0.2600 (6)	0.6274 (2)	0.0208 (9)	
C1	0.7770 (7)	0.2748 (6)	0.6150 (3)	0.0218 (11)	
C2	0.5683 (7)	0.2406 (7)	0.4556 (3)	0.0248 (11)	
C3	0.7772 (7)	0.2622 (7)	0.4439 (3)	0.0227 (11)	
C4	0.8836 (7)	0.2747 (7)	0.5250 (3)	0.0251 (11)	
C5	0.4745 (7)	0.2392 (7)	0.5484 (3)	0.0256 (12)	

supplementary materials

C6	0.8875 (8)	0.2745 (7)	0.3451 (3)	0.0275 (12)	
C7	0.8828 (7)	0.2921 (7)	0.7052 (3)	0.0246 (11)	
C8	0.5247 (7)	0.3884 (6)	1.0201 (3)	0.0237 (11)	
O10	-0.1094 (13)	-0.0862 (13)	0.9223 (7)	0.050 (3)	0.500
H2A	0.49300	0.22740	0.40290	0.039 (15)*	
H4A	1.02630	0.28290	0.51910	0.0300*	
H5A	0.33490	0.22280	0.55600	0.0300*	
H7A	-0.07800	0.47060	0.86320	0.0800*	
H7B	-0.02500	0.63680	0.88280	0.0800*	
H8A	0.53670	-0.16200	0.81820	0.0800*	
H8B	0.65420	-0.09500	0.73490	0.0800*	
H9A	0.24360	-0.06740	0.89420	0.0800*	
H9B	0.06500	0.09050	0.87300	0.0800*	
H10A	-0.21970	0.00790	0.90760	0.0800*	0.500
H10B	-0.12520	-0.12960	0.98560	0.0800*	0.500

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ce	0.0191 (2)	0.0294 (2)	0.0134 (1)	-0.0113 (1)	-0.0006(1)	0.0005 (1)
O1	0.0380 (19)	0.044 (2)	0.0238 (16)	-0.0092 (16)	-0.0055 (14)	0.0092 (14)
O2	0.0270 (18)	0.064 (3)	0.0303 (19)	0.0011 (17)	0.0068 (15)	0.0078 (17)
O3	0.0199 (15)	0.061 (2)	0.0274 (17)	-0.0163 (15)	-0.0040 (13)	-0.0028 (15)
O4	0.0268 (17)	0.075 (3)	0.0185 (15)	-0.0250 (17)	-0.0004 (13)	-0.0012 (16)
O5	0.074 (3)	0.0266 (17)	0.0225 (16)	-0.0142 (17)	-0.0080 (17)	-0.0003 (13)
O6	0.058 (2)	0.0306 (17)	0.0222 (16)	-0.0141 (16)	-0.0143 (15)	0.0071 (13)
O7	0.055 (2)	0.061 (2)	0.088 (3)	-0.0018 (16)	0.0304 (19)	0.0251 (19)
O8	0.048 (2)	0.0333 (19)	0.041 (2)	-0.0115 (16)	0.0176 (17)	-0.0007 (15)
O9	0.055 (2)	0.061 (2)	0.088 (3)	-0.0018 (16)	0.0304 (19)	0.0251 (19)
N1	0.0174 (16)	0.0268 (17)	0.0193 (16)	-0.0077 (13)	-0.0030 (13)	0.0001 (13)
C1	0.0197 (19)	0.024 (2)	0.022 (2)	-0.0068 (16)	-0.0017 (15)	0.0017 (15)
C2	0.028 (2)	0.030 (2)	0.0179 (19)	-0.0099 (17)	-0.0049 (16)	-0.0011 (16)
C3	0.024 (2)	0.025 (2)	0.0162 (18)	-0.0024 (16)	-0.0005 (15)	0.0042 (15)
C4	0.0172 (19)	0.035 (2)	0.022 (2)	-0.0057 (17)	-0.0003 (16)	0.0045 (17)
C5	0.022 (2)	0.031 (2)	0.026 (2)	-0.0110 (17)	-0.0029 (16)	0.0014 (17)
C6	0.033 (2)	0.029 (2)	0.017 (2)	-0.0045 (18)	0.0037 (17)	-0.0004 (16)
C7	0.0196 (19)	0.033 (2)	0.025 (2)	-0.0129 (17)	-0.0041 (16)	0.0032 (17)
C8	0.028 (2)	0.023 (2)	0.0189 (19)	-0.0052 (16)	-0.0027 (16)	0.0009 (15)
O10	0.037 (4)	0.042 (4)	0.072 (6)	-0.010 (3)	-0.013 (4)	0.009 (4)

Geometric parameters (Å, °)

Ce—N1	2.684 (3)	O8—H8B	0.8600
Ce-01 ⁱ	2.409 (4)	O9—H9B	0.8400
Ce—O3 ⁱⁱ	2.505 (3)	О9—Н9А	0.9900
Ce—O4	2.511 (3)	O10—H10A	0.8400
Ce—O5	2.508 (3)	O10—H10B	0.9400
Ce—O6 ⁱⁱⁱ	2.515 (3)	N1—C5	1.338 (5)

Ce—O7	2.568 (5)	N1—C1	1.343 (6)
Ce—O8	2.515 (4)	C1—C4	1.386 (6)
Ce—O9	2.582 (5)	C1—C7	1.498 (6)
O1—C6	1.268 (6)	C2—C3	1.385 (7)
O2—C6	1.244 (7)	C2—C5	1.390 (6)
O3—C7	1.245 (6)	C3—C6	1.517 (6)
O4—C7	1.268 (5)	C3—C4	1.383 (6)
O5—C8	1.248 (5)	C8—C8 ⁱⁱⁱ	1.543 (5)
O6—C8	1.253 (5)	C2—H2A	0.9300
O7—H7B	0.8300	C4—H4A	0.9300
O7—H7A	0.8600	С5—Н5А	0.9300
O8—H8A	0.9200		
O4—Ce—O5	74.74 (12)	Ce	121.3 (3)
O4—Ce—O7	142.54 (15)	Ce ⁱⁱⁱ —O6—C8	120.9 (3)
O4—Ce—O8	75.62 (14)	Ce—O7—H7B	105.00
O4—Ce—O9	130.01 (15)	H7A—O7—H7B	99.00
O4—Ce—N1	61.02 (10)	Ce—O7—H7A	96.00
O3 ⁱⁱ —Ce—O4	137.32 (10)	Ce—O8—H8A	127.00
01 ⁱ —Ce—O4	94.76 (13)	H8A—O8—H8B	113.00
O4—Ce—O6 ⁱⁱⁱ	70.50 (13)	Ce—O8—H8B	119.00
O5—Ce—O7	84.31 (15)	Се—О9—Н9А	120.00
O5—Ce—O8	78.05 (12)	Н9А—О9—Н9В	96.00
O5—Ce—O9	67.22 (15)	Се—О9—Н9В	107.00
O5—Ce—N1	130.72 (12)	H10A—O10—H10B	112.00
O3 ⁱⁱ —Ce—O5	141.57 (12)	Ce—N1—C5	123.6 (3)
O1 ⁱ —Ce—O5	132.71 (11)	Ce—N1—C1	118.7 (2)
O5—Ce—O6 ⁱⁱⁱ	64.05 (10)	C1—N1—C5	117.1 (3)
O7—Ce—O8	130.23 (15)	N1—C1—C4	122.5 (4)
O7—Ce—O9	64.30 (16)	N1—C1—C7	115.4 (4)
O7—Ce—N1	144.66 (14)	C4—C1—C7	122.1 (4)
O3 ⁱⁱ —Ce—O7	76.31 (14)	C3—C2—C5	118.1 (4)
O1 ⁱ —Ce—O7	76.97 (15)	C2—C3—C6	121.4 (4)
O6 ⁱⁱⁱ —Ce—O7	72.47 (15)	C4—C3—C6	120.3 (4)
O8—Ce—O9	65.94 (15)	C2—C3—C4	118.3 (4)
O8—Ce—N1	71.24 (12)	C1—C4—C3	119.8 (4)
O3 ⁱⁱ —Ce—O8	89.53 (13)	N1—C5—C2	124.1 (4)
O1 ⁱ —Ce—O8	144.86 (12)	O1—C6—O2	127.1 (4)
O6 ⁱⁱⁱ —Ce—O8	134.19 (12)	O2—C6—C3	116.8 (4)
O9—Ce—N1	127.54 (14)	O1—C6—C3	116.0 (4)
O3 ⁱⁱ —Ce—O9	74.47 (14)	O4—C7—C1	116.2 (4)
01 ⁱ —Ce—O9	134.92 (15)	O3—C7—C1	119.4 (4)
O6 ⁱⁱⁱ —Ce—O9			
	116.36 (14)	O3—C7—O4	124.4 (4)
O3 ⁱⁱ —Ce—N1	116.36 (14) 76.35 (10)	O3—C7—O4 O5—C8—O6	124.4 (4) 126.7 (4)
O3 ⁱⁱ —Ce—N1 O1 ⁱ —Ce—N1	116.36 (14) 76.35 (10) 74.55 (11)	O3—C7—O4 O5—C8—O6 O5—C8—C8 ⁱⁱⁱ	124.4 (4) 126.7 (4) 116.7 (4)

supplementary materials

O1 ⁱ —Ce—O3 ⁱⁱ	74.72 (12)	С5—С2—Н2А	121.00
O3 ⁱⁱ —Ce—O6 ⁱⁱⁱ	136.22 (12)	C3—C2—H2A	121.00
O1 ⁱ —Ce—O6 ⁱⁱⁱ	68.95 (11)	C1—C4—H4A	120.00
Ce ⁱ —O1—C6	138.2 (3)	C3—C4—H4A	120.00
Ce ^{iv} —O3—C7	140.1 (3)	N1—C5—H5A	118.00
Ce—O4—C7	127.9 (3)	С2—С5—Н5А	118.00
O5—Ce—O4—C7	158.0 (4)	N1—Ce—O1 ⁱ —C6 ⁱ	73.5 (5)
O7—Ce—O4—C7	-143.7 (4)	O4—Ce—O6 ⁱⁱⁱ —C8 ⁱⁱⁱ	-87.9 (4)
O8—Ce—O4—C7	76.7 (4)	O5—Ce—O6 ⁱⁱⁱ —C8 ⁱⁱⁱ	-5.9 (3)
O9—Ce—O4—C7	116.9 (4)	O7—Ce—O6 ⁱⁱⁱ —C8 ⁱⁱⁱ	86.3 (4)
N1—Ce—O4—C7	0.5 (4)	O8—Ce—O6 ⁱⁱⁱ —C8 ⁱⁱⁱ	-43.3 (4)
O3 ⁱⁱ —Ce—O4—C7	3.6 (5)	09—Ce—O6 ⁱⁱⁱ —C8 ⁱⁱⁱ	37.9 (4)
O1 ⁱ —Ce—O4—C7	-68.9 (4)	N1—Ce—O6 ⁱⁱⁱ —C8 ⁱⁱⁱ	-130.9 (3)
O6 ⁱⁱⁱ —Ce—O4—C7	-134.6 (4)	Ce ⁱ —O1—C6—O2	-76.7 (7)
O4—Ce—O5—C8	80.8 (4)	Ce ⁱ —O1—C6—C3	101.7 (5)
O7—Ce—O5—C8	-67.9 (4)	Ce ^{iv} —O3—C7—O4	-12.4 (8)
O8—Ce—O5—C8	158.9 (4)	Ce ^{iv} —O3—C7—C1	168.6 (3)
O9—Ce—O5—C8	-132.4 (4)	Ce—O4—C7—O3	-174.5 (3)
N1—Ce—O5—C8	106.9 (4)	Ce-O4-C7-C1	4.5 (6)
O3 ⁱⁱ —Ce—O5—C8	-127.4 (4)	Ce—O5—C8—O6	174.3 (4)
01 ⁱ —Ce—O5—C8	-1.5 (5)	Ce—O5—C8—C8 ⁱⁱⁱ	-4.7 (6)
O6 ⁱⁱⁱ —Ce—O5—C8	5.4 (4)	Ce ⁱⁱⁱ —O6—C8—O5	175.0 (4)
O4—Ce—N1—C1	-6.1 (3)	Ce ⁱⁱⁱ —O6—C8—C8 ⁱⁱⁱ	-6.0 (5)
O4—Ce—N1—C5	-176.6 (4)	Ce—N1—C1—C4	-169.4 (3)
O5—Ce—N1—C1	-35.2 (4)	Ce—N1—C1—C7	10.5 (5)
O5-Ce-N1-C5	154.3 (3)	C5—N1—C1—C4	1.7 (6)
O7—Ce—N1—C1	135.9 (3)	C5—N1—C1—C7	-178.4 (4)
O7—Ce—N1—C5	-34.6 (5)	Ce-N1-C5-C2	168.0 (3)
08—Ce—N1—C1	-89.7 (3)	C1—N1—C5—C2	-2.7 (7)
O8—Ce—N1—C5	99.8 (4)	N1-C1-C4-C3	1.0 (6)
O9—Ce—N1—C1	-126.2 (3)	C7—C1—C4—C3	-178.8 (4)
O9—Ce—N1—C5	63.3 (4)	N1—C1—C7—O3	169.2 (4)
O3 ⁱⁱ —Ce—N1—C1	176.1 (3)	N1—C1—C7—O4	-9.8 (6)
O3 ⁱⁱ —Ce—N1—C5	5.6 (3)	C4—C1—C7—O3	-11.0 (6)
O1 ⁱ —Ce—N1—C1	98.5 (3)	C4—C1—C7—O4	170.0 (4)
O1 ⁱ —Ce—N1—C5	-72.0 (3)	C5—C2—C3—C4	2.0 (6)
O6 ⁱⁱⁱ —Ce—N1—C1	41.2 (3)	C5—C2—C3—C6	-177.4 (4)
O6 ⁱⁱⁱ —Ce—N1—C5	-129.3 (3)	C3—C2—C5—N1	0.9 (7)
04—Ce—O3 ⁱⁱ —C7 ⁱⁱ	-172.6 (4)	C2—C3—C4—C1	-2.8 (7)
O5—Ce—O3 ⁱⁱ —C7 ⁱⁱ	49.5 (6)	C6—C3—C4—C1	176.5 (4)
O7—Ce—O3 ⁱⁱ —C7 ⁱⁱ	-12.4 (5)	C2—C3—C6—O1	27.1 (6)
O8—Ce—O3 ⁱⁱ —C7 ⁱⁱ	119.4 (5)	C2—C3—C6—O2	-154.4 (5)

O9—Ce—O3 ⁱⁱ —C7 ⁱⁱ	54.3 (5)	C4—C3—C6—O1	-152.3 (4)
N1—Ce—O3 ⁱⁱ —C7 ⁱⁱ	-169.8 (5)	C4—C3—C6—O2	26.3 (6)
04-Ce-01 ⁱ -C6 ⁱ	131.6 (5)	O5—C8—C8 ⁱⁱⁱ —O5 ⁱⁱⁱ	-180.0 (5)
O5-Ce-O1 ⁱ -C6 ⁱ	-154.8 (4)	O5—C8—C8 ⁱⁱⁱ —O6 ⁱⁱⁱ	-0.9 (6)
O7—Ce—O1 ⁱ —C6 ⁱ	-85.4 (5)	O6—C8—C8 ⁱⁱⁱ —O5 ⁱⁱⁱ	0.9 (6)
08—Ce—O1 ⁱ —C6 ⁱ	60.0 (6)	06—C8—C8 ⁱⁱⁱ —O6 ⁱⁱⁱ	180.0 (4)
$O9$ — Ce — $O1^i$ — $C6^i$	-54.6 (5)		

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) *x*-1, *y*, *z*; (iii) -*x*+1, -*y*+1, -*z*+2; (iv) *x*+1, *y*, *z*.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O7—H7A···O4 ⁱⁱ	0.86	2.03	2.879 (6)	171.00
O7—H7B…O10 ^v	0.83	1.84	2.569 (10)	146.00
O8—H8A···O6 ^{vi}	0.92	2.00	2.910 (5)	170.00
O8—H8B····O2 ^{vii}	0.86	1.84	2.655 (6)	159.00
O9—H9A…O6 ^{vi}	0.99	2.01	2.987 (6)	169.00
O9—H9B…O10	0.84	1.93	2.440 (10)	118.00
O10—H10A···O5 ⁱⁱ	0.84	2.12	2.844 (9)	143.00
O10—H10A···O8 ⁱⁱ	0.84	2.39	2.913 (10)	121.00
O10—H10B····O9 ^{viii}	0.94	1.63	2.501 (11)	153.00
C5—H5A····O3 ⁱⁱ	0.93	2.46	3.131 (5)	129.
~				

Symmetry codes: (ii) *x*-1, *y*, *z*; (v) *x*, *y*+1, *z*; (vi) -*x*+1, -*y*, -*z*+2; (vii) -*x*+2, -*y*, -*z*+1; (viii) -*x*, -*y*, -*z*+2.

Fig. 1

